nnsched: A neural network

based process scheduler

Radboud University Nijmegen, 12 June 2008

Peter Bex (peter.bex@xs4all.nl)

Problem statement

Computers are faster than a few years ago, but software is just as
slow (sometimes slower)!

What can we do about that?

O Make faster programs (duh)

o People want more fancy functionality, which cancels this
O See if we can prioritize programs better

o Important programs should have priority

Priority

How do we know what programs are important?

That depends on the user:
O Multimedia is important to a home user
o Networking performance can be sacrificed to make multimedia apps faster.

> Example: Who cares if the next episode of "The Simpsons" finishes downloading 5 minutes later? You're
watching the current episode right now and its playback must be smooth!

O0On a web server, networking is more important than anything
else!

Priority

How do we know what programs are important?

If we know what the user wants, we can look
at a program’s behaviour:

O Does it use networking?

O Does it output sound?

O Does it process keystrokes?
O Does it access the harddisk?

Use this information as features for a neural
network which can instruct the OS scheduler

Scheduling 101

A CPU'’s task:
O Fetch instruction

O Execute instruction
O Update instruction pointer
O Repeat

We have only one CPU, so how come we can run more than one
program at the same time?

Scheduling 101

Multitasking works like this:
ORun a tiny bit of program A

O Run a tiny bit of program B
O Run a tiny bit of program C

O Repeat
Switch very quickly, and it looks like they’re running concurrently.

This is a lot like how cartoons work: quickly alternate pictures to
make them move.

Scheduling 101

How do we prioritize?
When choosing the next program to run on the CPU, choose the
program that’s important more often.

O This is tricky to get right!

Existing OSes already allow you to define priorities.
O1t’s a lot of work for a user to define priority this for every program
he uses

OLet a neural network perform this task

Implementation overview

Let’s solve this the easy way:
O Take an existing OS
oWhy NetBSD?

> Free/libre software -> source is available
> Clean design -> easy to learn and change

OLet a neural net determine priority

O Re-use existing priority controls
o UNIX "nice" values

All we need to do is gather features and run the network!
O Sounds easier than it is

Implementation - kernel

Kernel extensions:
O Feature registration

o Defines features
O Makes it very easy to experiment with features

O Scheduler advisor

O Every second, recalculate priorities by running registered feature values
through net

O Feature monitor "device": /dev/nnfmon
O For obtaining training data
O Network upload: /dev/nnconf
o User can upload new networks into a running kernel

Implementation - userland

Userland (normal programs):
O Training program
o Produces networks from feature data
O Testing program
O To check network performance
O Configuration programs
O To upload networks, fetch features from the kernel

And various other utilities

Features

Initial testing was done with the following features:
O Terminal reads, writes and read/write ratio

O Audio reads, writes and read/write ratio
O Network reads, writes and read/write ratio
O Disk reads, writes and read/write ratio

read/write ratio: hard to calculate with network
O Turned out to be a useless feature

Features - ratios

read/write ratio: hard to calculate with network
O Turned out to be a useless feature

Flrafnu +

ftp =

bzipz «x
wi $4d¥dUkpnk
wi {LHURPR}

mpLaner o
LETNHNELTY
faim "
r]
1.1
thy . *
.
1
a.1 1 e
. - __-_H--\—_
o
[- T —
-
-
~ ey
- l* -
’H.Eﬂﬂﬂﬂ
o — N
LoD - F
U — 60

Features - others

Other features: very useful
O Reads or writes, doesn’t matter which

Flrafnu +

ftp =

bzipz «x
wi $4d¥dUkpnk
wi {LHURPR}

mpLaner o
LCIIHIILTE

urdtina 3

Features - In detall

Clusters from the previous slide make sense, but the real-time data
IS very chaotic:

‘I'l.-lp WA Loy ——
moncoder r?ada
el - e Wit ———
h=ip®* repada ——
heipi? writira
nplaygrr rrads
HIEl A
g
=
-
E
w
i
&
b=
m
E
w
™™
1
| I |
]

Network topology

To smooth out the features a bit, a "memory" layer was added to the
network:

Common

network data Output layer

A
|
(9
(@ Hidden layer(s)

i -—Aa
0 Q (M0 (M0 (Me) 0 | Ml memory
T T e

Memorize previous input

Features

Results

Project was a reasonable success:
O Network takes work out of user’s hands

O User-friendly: just load a pre-trained network
OVery easy to experiment with features
O0OK performance overhead

Room for improvement/future reasearch:

O Better features/more feature research

O Integration with the X windowing system (HARD!)
O At least adding features is very easy!

O Faster training algorithms (quickprop, rprop, ...)
O Different networks (SOM, ...)

Demo

Thank you

Code and master thesis available from
http://nnsched.sourceforge.net

Questions?

