
nnsched: A neural network

based process scheduler

Radboud University Nijmegen, 12 June 2008

Peter Bex (peter.bex@xs4all.nl)

 Problem statement

 Computers are faster than a few years ago, but software is just as
slow (sometimes slower)!

 What can we do about that?

 Make faster programs (duh)
 People want more fancy functionality, which cancels this

 See if we can prioritize programs better
 Important programs should have priority

 Priority

 How do we know what programs are important?

 That depends on the user:
 Multimedia is important to a home user
 Networking performance can be sacrificed to make multimedia apps faster.
 Example: Who cares if the next episode of "The Simpsons" finishes downloading 5 minutes later? You’re

watching the current episode right now and its playback must be smooth!

 On a web server, networking is more important than anything
else!

 Priority

 How do we know what programs are important?

 If we know what the user wants, we can look
 at a program’s behaviour:

 Does it use networking?
 Does it output sound?
 Does it process keystrokes?
 Does it access the harddisk?

 Use this information as features for a neural
 network which can instruct the OS scheduler

 Scheduling 101

 A CPU’s task:
 Fetch instruction
 Execute instruction
 Update instruction pointer
 Repeat

 We have only one CPU, so how come we can run more than one
program at the same time?

 Scheduling 101

 Multitasking works like this:
 Run a tiny bit of program A
 Run a tiny bit of program B
 Run a tiny bit of program C
 Repeat
 Switch very quickly, and it looks like they’re running concurrently.

 This is a lot like how cartoons work: quickly alternate pictures to
make them move.

 Scheduling 101

 How do we prioritize?
 When choosing the next program to run on the CPU, choose the
program that’s important more often.

 This is tricky to get right!

 Existing OSes already allow you to define priorities.
 It’s a lot of work for a user to define priority this for every program

he uses

 Let a neural network perform this task

 Implementation overview

 Let’s solve this the easy way:
 Take an existing OS
 Why NetBSD?
 Free/libre software -> source is available

 Clean design -> easy to learn and change

 Let a neural net determine priority
 Re-use existing priority controls
 UNIX "nice" values

 All we need to do is gather features and run the network!

 Sounds easier than it is

 Implementation - kernel

 Kernel extensions:
 Feature registration
 Defines features

 Makes it very easy to experiment with features

 Scheduler advisor
 Every second, recalculate priorities by running registered feature values

through net

 Feature monitor "device": /dev/nnfmon
 For obtaining training data

 Network upload: /dev/nnconf
 User can upload new networks into a running kernel

 Implementation - userland

 Userland (normal programs):
 Training program
 Produces networks from feature data

 Testing program
 To check network performance

 Configuration programs
 To upload networks, fetch features from the kernel

 And various other utilities

 Features

 Initial testing was done with the following features:
 Terminal reads, writes and read/write ratio
 Audio reads, writes and read/write ratio
 Network reads, writes and read/write ratio
 Disk reads, writes and read/write ratio

 read/write ratio: hard to calculate with network
 Turned out to be a useless feature

 Features - ratios

 read/write ratio: hard to calculate with network
 Turned out to be a useless feature

 Features - others

 Other features: very useful
 Reads or writes, doesn’t matter which

 Features - in detail

 Clusters from the previous slide make sense, but the real-time data
is very chaotic:

 Network topology

 To smooth out the features a bit, a "memory" layer was added to the
network:

Features

Input & memory

2H H1

32

O

"layer"

network data
Common

Memorize previous input

M1 M MIII1 32

Hidden layer(s)

Output layer

PCB

 Results

 Project was a reasonable success:
 Network takes work out of user’s hands
 User-friendly: just load a pre-trained network
 Very easy to experiment with features
 OK performance overhead

 Room for improvement/future reasearch:
 Better features/more feature research
 Integration with the X windowing system (HARD!)

 At least adding features is very easy!

 Faster training algorithms (quickprop, rprop, ...)
 Different networks (SOM, ...)

Demo

 Thank you

 Code and master thesis available from
 http://nnsched.sourceforge.net

 Questions?

